Finally, Convert Carbon dioxide to fuel again.

A good news to fellow go green lovers, scientists have found a way to convert carbon-di-oxide to fuel. Carbon-di-oxide is the gas that is released by burning a fuel. This is very harmful for the environment.

Scientists have developed a material that can help convert carbon dioxide into fuel and other energy-rich products using light without generating unwanted byproducts.

The achievement marks a significant step forward in developing technology that can generate fuel, while mitigating levels of a potent greenhouse gas using solar power.

“We show a near 100% selectivity of CO production, with no detection of competing gas products like hydrogen or methane,” said Haimei Zheng, scientist at US Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab).
When exposed to visible light, the material, a “spongy” nickel organic crystalline structure, converted carbon dioxide (CO2) into carbon monoxide (CO) gas, which can be further turned into liquid fuels, solvents, and other useful products.

Among the well-known examples of carbon dioxide reduction is in photosynthesis, when plants transfer electrons from water to carbon dioxide while creating carbohydrates and oxygen.

Carbon dioxide reduction needs catalysts to help break the molecule’s stable bonds.

Researchers have been particularly keen on eliminating competing chemical reactions in the reduction of carbon dioxide.

“Complete suppression of the competing hydrogen evolution during a photocatalytic CO2-to-CO conversion had not been achieved before our work,” said Zheng.

Researchers developed an innovative laser chemical method of creating a metal-organic composite material.

They dissolved nickel precursors in a solution of triethylene glycol and exposed the solution to an unfocused infrared laser, which set off a chain reaction in the solution as the metal absorbed the light.


The resulting reaction formed metal-organic composites that were then separated from the solution.


“When we changed the wavelength of the laser, we would get different composites,” said Kaiyang Niu, a materials scientist in Zheng’s lab.


“That’s how we determined that the reactions were light- activated rather than heat-activated,” said Niu.


The study was published in the journal Science Advances.


Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s